Elías, F.; Alfaro, E. J.; Cabrera-Caño, J.
Monthly Notices of the Royal Astronomical Society, Volume 397, Issue 1, pp. 2-13.
07/2009
We perform a study of the spatial and kinematical distribution of young open clusters in the solar neighbourhood, discerning between bound clusters and transient stellar condensations within our sample. Then, we discriminate between Gould Belt (GB) and local Galactic disc (LGD) members, using our previous estimate of the structural parameters of both systems obtained from a sample of O-B6 Hipparcos stars. Single membership probabilities of the clusters are also calculated in the separation process. Using this classified sample, we analyse the spatial structure and the kinematic behaviour of the cluster system in the GB. The two star formation regions that dominate and give the GB its characteristic-inclined shape show a striking difference in their content of star clusters: while Ori OB1 is richly populated by open clusters, not a single one can be found within the boundaries of Sco OB2. This is mirrored in the velocity space, translating again into an abundance of clusters in the region of the kinematic space populated by the members of Ori OB1, and a marginal number of them associated with Sco OB2. We interpret all these differences by characterizing the Orion region as a cluster complex typically surrounded by a stellar halo, and the Sco-Cen region as an OB association in the outskirts of the complex. In the light of these results, we study the nature of the GB with respect to the optical segment of the Orion Arm, and we propose that the different content of star clusters, the different heights over the Galactic plane and the different residual velocities of Ori OB1 and Sco OB2 can be explained in terms of their relative position to the density maximum of the Local Arm in the solar neighbourhood. Although morphologically intriguing, the GB appears to be the result of our local and biased view of a larger star cluster complex in the Local Arm, that could be explained by the internal dynamics of the Galactic disc.